Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide

Memristors are two-terminal passive circuit elements that have been developed for use in non-volatile resistive random-access memory and may also be useful in neuromorphic computing1,2,3,4,5,6. Memristors have higher endurance and faster read/write times than flash memory4,7,8 and can provide multi-bit data storage. However, although two-terminal memristors have demonstrated capacity for basic neural functions, synapses in the human brain outnumber neurons by more than a thousandfold, which implies that multi-terminal memristors are needed to perform complex functions such as heterosynaptic plasticity3,9,10,11,12,13. Previous attempts to move beyond two-terminal memristors, such as the three-terminal Widrow–Hoff memristor14 and field-effect transistors with nanoionic gates15 or floating gates16, did not achieve memristive switching in the transistor17. Here we report the experimental realization of a multi-terminal hybrid memristor and transistor (that is, a memtransistor) using polycrystalline monolayer molybdenum disulfide (MoS2) in a scalable fabrication process.

Source: Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide | Nature

Categories: Uncategorized

Post navigation

Comments are closed.

Create a free website or blog at WordPress.com.

%d bloggers like this: